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The generation and energy downscaling of wind-forced long internal waves in strongly
stratified small-to-medium sized narrow lakes are studied. A two-layer nonlinear model
with forcing and damping is employed. Even though the wave field is fundamentally
bidirectional in nature, a domain folding technique is employed to simulate the
leading-order internal wave field in terms of a weakly nonlinear weakly dispersive
model equation of Korteweg–deVries type. Parametric effects of wind-forcing and
environmental conditions, including variable topography and variable basin width, are
examined. Energy downscaling from basin-scale waves to shorter scales are quantified
by means of a time evolution of the wave energy spectra. It is demonstrated that an
internal wave resonance is possible when repetitive wind-forcing events arise with a
frequency near the linear seiche frequency. An attempt is made to apply the model
to describe the shoaling of long waves on sloping endwall boundaries. Modelling of
the energy loss and energy reflection during a shoaling event is calibrated against
laboratory experiments.

1. Introduction
Hydrodynamic motion in the interior of lakes is crucial to issues such as water

quality and ecological sustainability. The interior dynamics is energized primarily by
wind action, with the deposition of energy into basin-scale motions through a transfer
of the wind stress across the free surface boundary layer. In typical stably stratified
lakes the action of a surface wind stress drives not only high-frequency surface waves,
whose region of influence is mostly confined to the upper-mixed layer, but also
forces through volumetric transport in the closed basin a significant tilting of the
internal density field, inducing a basin-scale pressure gradient. Then, when the wind
stress subsequently diminishes, the unbalanced large-scale horizontal pressure gradient
relaxes through a dynamic process leading to the appearance of a spectrum of internal
waves whose state at any subsequent time determines, and dominates, the internal
weather of a closed basin. The consequent internal wave field contains, in general,
energy in scales ranging from basin scale to those on the order of the mixed-layer
depth, and in frequencies ranging from the seiche period up to the buoyancy frequency
(Saggio & Imberger 1998). Motions encompassing this wide range of scales are
generally propagative, possess three dimensional features and can effectively transfer
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momentum and kinetic energy throughout the basin and to boundary domains where
the energy is principally dissipated (Imberger 1994). Hence, internal waves serve
as energy distributors and assert a pivotal role in driving transport and mixing
processes in lakes, and they define the flux path of biological and chemical particles
within a basin (Imberger 1998). Understanding the principal mechanisms whereby
bio-geochemical transport occurs in a basin is crucial to establishing management
procedures and remediation policies for vulnerable and fragile fresh water resources.

For small to medium sized lakes, particularly narrow lakes where the effect of the
earth’s rotation is negligible, a wind blowing over the surface induces a downwind
transport in the epilimnion. The result in a closed basin is an accumulation of
epilimnion water near the leeward shore with a consequent excess of hypolimnion
water at the windward end due to volume conservation. There is an attendant, but
very slight, upslope tilt of the free surface, but the downslope tilt in the metalimnion
in the wind direction is much more pronounced (Mortimer 1952; Monismith 1986;
Stevens & Imberger 1996). If the wind is sustained for a significant fraction of the
internal pendulum (alt. seiche) period, and then relaxes, the unbalanced baroclinic
pressure gradient causes the tilted thermocline to tend to return to equilibrium. This
return to equilibrium occurs, initially at least, through formation of a basin-scale
internal seiche. Although a barotropic seiche also emerges over the free surface, the
basin-scale internal seiche is far more energetic (cf. Heaps & Ramsbottom 1966;
Heaps 1984). The energy deposited into wind-generated basin-scale internal motion is
eventually transformed through a downscale cascade of energy. This energy transfer
occurs across the spectrum of internal waves into small-scale turbulence and other
dissipative motions over the full extent of the basin boundaries. The dominant part
of the energy is dissipated by turbulent mixing in the bottom boundary under long
internal waves and by the breaking and interaction of internal waves at sloping,
shore-line boundaries (Michallet & Ivey 1999). A much smaller fraction of the energy
is dissipated by turbulent mixing which is driven by wave-induced shear instability
in the interior of the basin. These mixing and dissipation processes, as well as the
turbulent mixing process in the upper surface layer, are an important and active area
of research (see review by Wüest & Lorke 2003).

Field observations in Lake Biwa by Saggio & Imberger (1998) suggest that the
decay of internal wave energy is much faster than predicted by estimates based on
any typical internal dissipation rate. They also suggest that the shorter scale higher
frequency waves trapped in the metalimnion seem to distribute the energy and reshape
the internal energy spectrum. Generation and dissipation of such high-frequency waves
are yet to be identified. Thorpe et al. (1996) discussed potential sources of the high-
frequency waves, listing such possibilities as: (i) nonlinear steepening of the basin-scale
waves leading to the appearance of a packet of internal solitary waves (ISWs); (ii) the
thermocline jump propagating around local irregular and rough bathymetry generates
local disturbances which radiate internal waves and (iii) a region of strong shear with
low Richardson number generated across the thermocline as long waves propagate,
generating locally-unstable patches with radiating internal waves.

An accumulating body of field observations has clearly revealed the existence of
the internal seiche and its frequent degeneration into a steep nonlinear wavefront.
Furthermore, this body of observations has provided firm evidence of packets of
propagating ISWs wherein a higher frequency dynamics is present (e.g. Thorpe & Hall
1972; Hunkins & Fliegel 1973; Farmer 1978; Wiegand & Carmack 1986). Laboratory
experiments (Horn, Imberger & Ivey 2001) have elucidated the steepening of the
initial seiche into a nonlinear front, along with its subsequent evolution into packets
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of bidirectionally propagating long waves. These long-wave packets seem to exhibit
a dominant balance between nonlinearity and non-hydrostatic (dispersive) effects,
the balance underlying the existence of permanent features such as solitary waves
(Grimshaw 2002). Laboratory experiments have also elucidated processes associated
with the shoaling and reflecting of ISWs at a sloping boundary. Shoaling ISWs are
found to break and dissipate a substantial fraction of their energy due to turbulent
mixing, but a non-trivial reflection in terms of a transformed packet occurs (Helfrich
1992; Michallet & Ivey 1999; Boegman, Ivey & Imberger 2005a; Bourgault & Kelly
2007; Lamb & Nguyen 2009). Generation of nonlinear long-wave packets (nominal
ISWs) following the early steepening of the initial basin-scale tilt is, therefore, one
of the very important pathways for energy downscaling. Nonlinear steepening and
generation of ISWs are, however, strongly dependent on the strength and spatio-
temporal distribution of the applied wind stress, and also on the background
environment (stratification and bathymetry).

The functional dependence of the energy deposition into the internal wave spectrum,
and the evolution of the spectrum, on the multiple parameters of the problem is not
well understood. Horn et al. (2001) studied the degeneration of a basin-scale seiche
into higher frequency solitary waves for a range of wind-driven tilts and background
environments by using a laboratory model. Boegman, Ivey & Imberger (2005b)
described the energetics of a basin-scale seiche, its consequent nonlinear surge, and
its later evolution in frequency space by using the same laboratory model. They also
conducted experiments with a sloping boundary and characterized the energy loss of
ISW packets in terms of reflection coefficients and the frequency spectrum (Boegman
et al. 2005a). Several field observations were also examined by these authors. From
a numerical point of view, however, there is a dearth of models that admit a means
for rapid exploration of parametric effects on the energetics and dynamics of the
internal weather in closed basins. There are two principal reasons for this state of
affairs in lake hydrodynamics: (i) most numerical models are based on the hydrostatic
approximation and therefore cannot capture the non-hydrostatic effects essential to
front evolution and energy downscaling; and (ii) ISWs in numerical models of many
lakes lie in subgrid scales, and practical methods for modelling and parameterizations
of generation and dissipation of such subgrid scale waves is yet to be developed (e.g.
Boegman, Ivey & Imberger 2004). Hence, further understanding of the generation,
evolution and dissipation of long-wave features in closed basins (e.g. ISWs), especially
the understanding of parametric effects via a rapid-simulation tool, can go a long
way towards facilitating the development of reliable and useful numerical models of
the broad range of scales associated with wind-driven lake hydrodynamics.

In this report we quantify the downscale energy process of internal waves from
the basin scale to scales which are of order 5–10 times the controlling fluid depth
(typically the upper-mixed-layer depth). Our approach is to use a simplified theoretical
model which includes variable environmental and forcing parameters. The vertical
structure is taken in a most simplified form, a two-layer model, and the effect
of the earth’s rotation is neglected as the model is restricted to high-aspect ratio
basins (i.e. the length-to-width ratio is large). These simplifications are advantageous
to construction of a simulation model that captures leading-order nonlinear and
dispersive effects, and yet allows rapid simulation to reasonably explore a considerable
range of parameter settings for various wind-forcing scenarios. In § 2 we describe a
driven-damped variable-environmental higher order Korteweg–deVries (KdV) model
applicable to describing bidirectional propagation of internal waves which are long
relative to the controlling depth (i.e. the mixed-layer depth) in a confined basin.
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Figure 1. Two-layer density stratified lake model.

In § 4 we apply the model to a rectangular lake for different wind stress distributions,
demonstrate internal wave resonance under periodic wind forcing, and apply the
model to various background environments and wind-forcing strengths. In § 5 we
discuss the downscale energy transfer in lakes by use of a spatio-temporal energy
spectrum obtained from model simulations. In § 6 the model is applied to lakes with
variable topography and width. In § 7 we also attempt to extend the model to the
case of a sloping endwall and calibrate the simulation model against results from
laboratory experiments by Boegman et al. (2005a).

2. Evolution model
We consider a lake of length L having a stable two-layer density stratification as

depicted in figure 1. The length of the lake, and particularly its width, is assumed to
be sufficiently small so that the effect of the earth’s rotation is negligible. The upper
layer with density ρ1 and thickness h1 overlies the heavier lower layer with density
ρ2 and variable thickness h2(x). If the metalimnion (thermocline) of a stratified lake
is sufficiently thin, a two-layer model can be used to rationally approximate the
lowest mode dynamics. Such a model, of course, precludes any leakage of energy into
higher vertical modes, an effect that almost surely is an important element in the
energy transfer to shorter scales in a closed basin, especially for waves propagating
through horizontal contractions and undergoing ‘reflections’ from sloping endwalls.
Such effects will be addressed in a subsequent study where coupled-mode evolution
equations are derived and simulated (Sakai & Redekopp 2009).

The internal wave motion in this two-layer interfacial model is marked by an
interfacial displacement z = ζ (x, t) from the equilibrium level. The lake is assumed
to have a variable width (i.e. variable layer widths W1(x) and W2(x) representing the
average widths of the respective layers), but its average measure is always assumed
to be narrow compared to the length L. In this limit a lateral averaging process can
be employed to obtain a laterally averaged value for the dependent variables such as
ζ (x, t). As the density ratio ρ1/ρ∞ across the free surface is large compared to the
internal density ratio ρ1/ρ2, the upper surface is assumed to be flat, a condition that
filters out any surface wave motion. We do allow for the existence of a surface stress
τs(x, t), however, to capture the effect of an applied wind stress and its potential for
forcing internal wave motions.

Since the propagation space (x direction) is bounded, it is essential to allow a full
bidirectionality in any asymptotic approximation of the forced, long-wave dynamics.
To this end, a long-wave evolution equation of Boussinesq form is required. However,
as shown by Horn et al. (2002), the leading-order contribution of bidirectional
propagation can be accounted for by use of an extended-folded-domain representation
of the unbiased second-order in time Boussinesq model resulting in a first-order in
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time KdV model. The asymptotic methodology underlying the rational derivation of
such a model equation is quite standard, and the reader can find relevant details
in Horn et al. (2002). Extending that work to propagation along a variable-width
channel using an adaptation of a cross-channel (lateral) averaging procedure employed
in earlier work by Teng & Wu (1992), the following evolution model is obtained:
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In this extended forced-dissipative (KdV) model, the effect of variable depth h2(x) is
accounted for through spatially varying coefficients, especially the variable long-wave
phase speed c0(x) and its derivative. The effect of variable lake width is contained
in the term involving a single depth-averaged width function W (x). The variable-
depth and variable-width effects are included in the derivation of the underlying
Boussinesq system, and as such capture naturally the effects of geometric steepening
and dispersion. The terms on the right-hand side, respectively, represent the effect
of turbulent bottom friction through use of a dimensionless friction coefficient Cf

and the effect of a varying surface wind stress described by the function Φ(x, t).
It should be also noted that inclusion of a cubic nonlinear term, yielding what
is sometimes referred to as the Gardner equation (Gardner 1971), or alternatively,
the extended KdV equation, is included in (2.1) in order to account for higher
order nonlinearity beyond the quadratic KdV model. The Gardner equation is now
widely recognized as a standard model for ISWs, including variable depth (e.g. see
reviews by Helfrich & Melville 2006; Grimshaw, Pelinovsky & Talipova 2007). A
further extension to account for a fully nonlinear representation of the long-wave
phase speed is currently available and, in fact, is described in § 7. In most lakes
the isopycnal surfaces intersect the bottom topography, which is not accounted in
the model (2.1) as the model assumes that the isopycnal surface intersects vertical
endwalls. An extension of (2.1) to basins with a sloping endwall is discussed also
in § 7.

As elucidated in Horn et al. (2002), (2.1) is employed in a periodic computational
domain [0, 2L] defined via an even extension of the original physical domain [0, L]
about x = L (see figure 2a). Then, the physical solution ζp is obtained by even-folding
of the solution about x =L; that is,

ζp = ζ (x, t) + ζ (2L − x, t). (2.3)

In this way (2.1) serves as a first-order model capturing the dominant physical effects
of the wind-generated wave field in narrow lakes. The reduction to a first order in
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Figure 2. (a) Topography is even-extended in the computational domain. The wind stress τs

is halved and mirrored about x = L. Direction of the wind stress in the left and the right half
domain are opposite each other. (b) Uniform and sinusoidal wind stress distributions defined
in the computational domain.

time dynamical model is a very significant step. Particularly in that it forms the basis
for a rapid-integration model useful for exploring the role of different parametric
effects in defining the internal wave field set up by wind forcing.

The model defined in (2.1) is presented in dimensional form. In what follows it
is useful to recast the equation in dimensionless form. To this end the interface
displacement is scaled with the epilimnion depth h1, the propagation coordinate x

is scaled with the basin length L and time is scaled with the nominal internal seiche
period 2L/c00, where c00 is the long-wave phase speed computed using a base value
of the lower layer depth h20. Furthermore, the wind stress function Φ(x, t) is scaled
with the square of a reference friction velocity u2

∗0. Using these scales, (2.1) takes the
non-dimensional form
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The coefficients c0, α, α2, β , kb and ks are now recast in dimensionless form, the
dependent variable f (x, t) is simply ζ/h1, and (x, t) are dimensionless space–time
coordinates scaled with their appropriate reference values. The corresponding physical
solution given in (2.3) is now denoted as fp(= ζp/h1). The wind stress distribution
function Φ(x, t) has been separated into a dimensionless spatial part X(x) and a
dimensionless temporal part T (t), and the use of non-dimensional variables has
introduced the Wedderburn number W (cf. Imberger & Patterson 1990 and Horn
et al. 2001). It is defined by

W =
c2
00h1

u2
∗0L

. (2.5)
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The Wedderburn number is useful for parameterizing the strength of the wind stress
and, with reference to (2.1), measures the magnitude of the baroclinic pressure gradient
(c0ζx ∼ c00h1/L) relative to the vertical gradient of the wind stress (∼ u2

∗0/c00).

3. Numerical method
To simulate the model described by (2.4) we employ the pseudo-spectral method

similar to that in Fornberg & Whitham (1978). Since the spatio-temporal model
equation is integrated in the spatially periodic computational domain, the spatial
derivatives can be computed accurately and efficiently by using the fast Fourier
transform. The third-order multi-step scheme is used for time integration. The
computer program MKDV, in which these numerical methods are implemented,
was originally developed by Horn et al. for simulating the initial value problem for
a two-layer model for a rectangular lake. It has been shown in their work that the
simulation results using MKDV agree qualitatively with their laboratory experiments
(Horn et al. 2002). The program was modified to accommodate the introduction of
applied wind forcing and a benthic (turbulent) friction in order to meet the objectives
of this study. The simulation results presented here used a total of Nx = 1024 spatial
mesh points in the computational domain [0, 2] and a time step of �t = 5 × 10−6

unless as otherwise noted.
In the specialized limit of a flat bottom and constant width (i.e. homogeneous

coefficients), and if the wind-forcing and boundary layer friction terms are absent, the
KdV equation possesses infinitely many conserved densities for either a periodic or an
unbounded domain (e.g. Drazin & Johnson 1989). In order to validate our modified
program, we evaluate the leading three conserved quantities

E1 =

∫ 2

0
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3
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2
x

}
dx

(3.1)

from simulation results. f (x, t) is a solution to (2.4) in the computational domain
[0, 2]. Since the resulted computational domain is finite and periodic, these integrations
must be evaluated over the computational domain. E1 represents conservation of mass
and E2 is that of energy including both potential and kinetic energy (see Appendix).
These conserved quantities are evaluated for several simulations using different sets
of parameters. Figure 3 shows time series of the conserved quantities for one of the
typical runs. The physical parameters were chosen as h1/h2 = 1/5 and h1/L = 0.002 in
the simulation. A uniform wind stress with Wedderburn number W = 1.0 is applied
for 0 � t � 1/4 starting from an initial state with a flat interface at rest (i.e. E1 is zero
theoretically). The calculated value of E1 is O(10−7), which is the order of machine
precision (the program was run in single precision arithmetic). The magnitudes
of E2 and E3 increase until t = 1/4 whereupon the wind forcing is discontinued.
Thereafter, the latter two conserved densities remain virtually constant, confirming a
very respectable simulation fidelity.

4. Effects of environmental parameters
In this section we consider the role of various parametric effects on the wind-

generated wave field in a lake devoid of geometric inhomogeneities; that is, in a
‘box’ lake having constant depth and constant width. Referring to the model (2.4),
and after invoking the Boussinesq approximation (ρ1 ≈ ρ2), the set of basic control
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Figure 3. Time series of the conserved quantities E1, E2 and E3.

parameters are reduced to h1/L, h1/h2, Cf and W. For most of the results that follow
a fixed friction coefficient Cf =0.0025 was used. This value has been recommended in
previous studies of frictionally damped, long-wave models of internal wave motions
(cf. Baines 1995; Grimshaw 2002). We study here the effects of these parameters on
the evolution of the nonlinear wave field driven by wind forcing, and seek to clarify
the transfer of internal wave energy from the basin-scale to progressively shorter
internal waves.

4.1. Effect of spatial wind stress distribution

The spatial wind stress distribution function X(x) is prescribed arbitrarily provided
only that it is antisymmetric about x =1 in the extended computational domain
[0, 2]. This antisymmetry requirement may cause the prescribed distribution X(x) to
be discontinuous at both the physical and computational boundaries. Such spatial
discontinuities in the forcing tend to produce small-scale numerical oscillations
every time step, and they soon pollute the numerical solution. To alleviate these
spurious high-wavenumber oscillations, one can introduce an artificial smoothing of
the distribution X(x) at the discontinuities. Alternatively, one can apply a spectral
(low pass) filtering of the numerical solution after a specified number of time steps
while the wind-forcing term is active. Both treatments are effective, but we mainly
used the spectral filtering, filtering out the upper 7/8 of the total Fourier modes
during the time the wind forcing is active. If the forcing continues for an extensive
time (e.g. see §§ 4.3 and 4.5), or if the forcing is relatively strong so that nonlinearity
becomes important and ISWs emerge during the time wind forcing is active, the use
of spatial stress smoothing is preferred over post spectral filtering.

In this study, we limit the choices for X(x) to several functionally simple
distributions: either a uniform distribution, or a sinusoidal distribution, or a linearly
varying distribution, and examine the influence of different stress densities. The
integral of the stress over the physical surface is taken to be equal in any comparison
of lake responses (see figure 2b) to different stress distributions. Figure 4, for example,
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Figure 4. Snap shots of the interface displacement fp for uniform (a) and sinusoidal (b) wind
stress distributions. Wind stress blowing to the right with W = 1 is applied for 0 � t � 1/4.

compares the simulated wave evolution for a uniform distribution with that of a
sinusoidal distribution with the physical parameters h1/h2 = 5 and h1/L = 0.002. A
spatially uniform wind stress with W =1 is applied continuously for 0 � t � 1/4, and is
switched off thereafter. The interface, which is uniformly flat initially, is progressively
depressed at the leeward end and elevated at the windward end. The depression
propagates windward and the elevation propagates leeward. The propagation speed
of these interfacial pulses is essentially equal to the linear, long-wave phase speed.
At t = 1/4 the tilted surface closely approximates a tilted straight line when the
stress distribution is uniform, and is smoothly curved when the stress distribution
is sinusoidal. After the wind is turned off, the interface begins to oscillate as a
standing wave (internal seiche). However, a nonlinear steepening occurs forming a
front on the background seiche. This front is gradually steepened (t = 1) and, at some
later time, nonlinear and dispersive effects become closely balanced allowing the
formation of a train of oscillatory waves (ISWs) which gradually disperse throughout
the domain (t = 2). The wavetrain reflects at boundaries, propagating back and forth
in the physical domain. As evident in figure 4, the peak amplitude of waves forced by
the sinusoidal stress distribution is relatively larger than that forced by the uniform
stress distribution. A wind stress of duration t = 1/4 is used as a reference value as
it corresponds to the time when the interface is first deformed from its equilibrium
position everywhere except at the lake centre. The model includes the boundary loss
term, but a decay in the energy is almost imperceptible for the total integration time
of the present simulation and for the selected friction coefficient. The time series of
the integral E2, which is a direct measure of the total energy of the internal wave
field forced by the wind (see Appendix), achieves a value of unity for the uniform
distribution as compared to a value of E2 = 3/2 for the sinusoidal distribution at
t = 1/4, even though the integrated stress distributions are identical. The locally
higher stress density in the middle of the physical domain for the sinusoidal stress
case induces a locally larger pressure gradient and, therefore, drives a locally steeper
interface (see figure 4 at t = 1/4). Also, such a locally high stress density injects larger
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energy solely to the gravest horizontal mode (half Fourier sine wave), resulting in
larger energy than that of the uniform stress case (cf. § 4.2).

4.2. Effect of Wedderburn number and depth ratio

An estimate of the early distortion of the metalimnion (interface), and the scaling of
the energy deposition into the internal wave field by an applied wind stress, can be
pursued by use of the linearized non-dispersive frictionless version of (2.1). Supposing
an impulsive onset of the wind stress with spatial distribution X(x) written in terms
of Fourier series

X(x) =

∞∑
n=1

Bn sin

(
nπx

L

)
, (4.1)

representing the antisymmetric stress distribution on the extended interval [0, 2L],
one can derive the following relations:
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If the wind stress is linearly varying along the lake as given by X(x) = 1 + δ(1 − 2x)
where δ is a spatial gradient of the stress, then the sine-transform Bn is given by

Bn =
2

nπ
{1 − (−1)n + δ(3 − (−1)n)} . (4.4)

It is worth noting that the quantity ks/W in (4.2) and (4.3) can, in the Boussinesq
approximation, be replaced by W−1

∗ where W∗ is the Wedderburn number defined in
terms of the reference phase speed c0∗ =

√
g̃h1 as opposed to the true phase speed c00.

Our simulations of the model (2.4) reveal that the energy scaling given by (4.3) yields
excellent results over a range of moderate Wedderburn numbers (e.g. 0.5 � W � 5) for
t � 0.5. It is noteworthy that the effect of depth ratio h2/h1 enters in (4.2) and (4.3)
solely through use of c00 in definition of the dimensionless time when the Boussinesq
approximation is invoked. That is,
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ρ2h1

c2
00h1

u2
∗0L

⇒ c0∗h1

u2
∗0L

= W∗ (4.5)

in the Boussinesq approximation. This reveals, perhaps, a preference for use of W∗ in
place of W, and such a preference is widely exercised (cf. Imberger & Patterson 1990;
Horn et al. 2001, 2002, etc.). However, with the ratio h2/h1 implicit in the scaling for
the time t , we prefer in this work to use the more general non-Boussinesq form, as
in the derivation of (2.1), throughout this presentation. Recovery of the Boussinesq
limit is straightforward from the general forms that follow.

4.3. Effect of wind stress duration

The previous results correspond to a wind forcing that is sustained for a fixed time of
t0 = 1/4. Increasing the duration of wind forcing is nominally expected to increase the
energy in the wave field. However, the internal response of the lake, including nonlinear
effects, can impose a competing effect counteracting the continued steepening of the
interface. Figure 5 shows the maximum value of E2 for various durations (t0) of a
uniform wind stress with W = 1 and Cf = 0.0025. The energy input is normalized
by that received after a forcing time of t0 = 1/4. The energy gain increases with the
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Figure 6. Internal wave evolution under sustained uniform wind blowing to the right.

forcing duration until a time of t0 = 1/2. At this time the energy deposited into the
internal wave field is maximum, and the internal lake response decreases as the stress
is continually applied.

Included in figure 5 are several data points at the time t = 1. First, the energy input
was also computed with Cf = 0 and, as noted by the corresponding data point at
t = 1, the energy level is imperceptibly changed from the value with Cf = 0.0025. This
argues for the fact that the non-zero energy at t = 1 is due to nonlinear effects. To this
point, the energy was computed again for two different cases: one with α =0 in (2.4)
and another with the value replaced by 2α in (2.4). Data points from these simulations
are shown in figure 5, confirming conclusively that the residual energy after one linear
seiche period is determined by nonlinear effects. Nonlinear steepening begins to distort
the interface shortly after the time the upwelling–downwelling fronts meet at the lake
centre at t = 1/4. The evolving linear balance between the baroclinic pressure gradient
and the applied wind stress begins to fail after t 	 1/4 and nonlinearity begins to
assert a controlling influence on the dynamics, at least for Wedderburn numbers in
the range, say, 1 � W � 5.

The corresponding internal dynamics under sustained wind are shown in figure 6,
where selected snap shots of the interface surface displacement for sustained
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rightwards wind forcing are presented. The surface is tilted down leeward for
0 < t < 1/2, but it returns towards the equilibrium line for 1/2 < t < 1. The return
of the surface is caused by the natural free mode seiche. This seesaw-like motion
repeats approximately with a seiche period. As exhibited in figure 6, a nonlinear front
gradually steepens, and eventually evolves into a train of solitary waves (ISWs). The
ISW wavetrain spreads, and goes back and forth, in the domain without significant
gain in wave energy (see figure 6 at t = 2 through t = 3). After t = 3.5 the wave
field is filled by the shorter wavelength scales of ISWs, and the wave field becomes
significantly more complex as the different wave components can not separate in the
closed domain. A simulation with sustained forcing for 0 � t � 20 revealed that the
seiching is damped in the presence of an unsteady wave field that persists throughout
the domain.

In order to characterize the significance of the nonlinearity, we define a shock
formation time ts by the relation

r =

∣∣∣∣∂fp

∂x
(x, ts)

∣∣∣∣
max∣∣∣∣∂fp

∂x
(x, t0)

∣∣∣∣
max

. (4.6)

The parameter r is a normalized measure of the maximum gradient of the interface.
As time increases, the gradient ratio (|∂fp(x, t)/∂x|max/|∂fp(x, t0)/∂x|max ) increases due
to the nonlinear steepening of the wavefront. When the gradient ratio is sufficiently
large, a packet of ISWs begins to emerge from the front. We refer, for convenience,
to the evolved wavefront as a ‘shock’ and quite arbitrarily take r = 10 for convention
as criterion for the formation of a shock. That is, we suppose a shock has formed
when the maximum steepness has increased tenfold following cessation of the applied
wind stress at t = t0.

One can, of course, define a breaking time obtained by applying the method of
characteristics to the nonlinear non-dispersive limit of the unforced non-dispersive
version of (2.1). Considering the negative volume (i.e. downwelled portion of the
interface on the leeward end immediately following cessation of an applied wind
stress) as an isolated initial condition on a semi-infinite domain when h2 >h1, the
breaking time tB is computed to be

tB = −
[
c0

(
α

dζ

dx
+ α2

dζ 2

dx

)
max

]−1

. (4.7)

For a uniform wind stress at t � 1/2, the slope of the interface is (essentially) constant
with the value 2ζ (0, t)/L. Limiting the model to include only the quadratic nonlinear
term (i.e. α2 = 0), this leads to the breaking time estimate presented by Horn et al.
(2001). However, for more general wind stress distributions, the estimate of tB is not
readily related to the peak upwelling amplitude. Furthermore, when h2 approaches h1

from above, the coefficient α1 tends towards zero and the breaking time depends on
both α2 and the maximum value of the quantity dζ 2/dx. For these reasons, we prefer
to employ the shock formation time given in (4.6).

Figure 7 shows the shock formation time for various W−1 and layer depth ratios
with a fixed h1/L = 0.002 and Cf = 0.0025. As expected from above discussions, the
shock is formed earlier for larger W−1 and deeper lower layers. Also, a longer wind-
forcing duration generates the shock earlier, so long as t0 � 1/2. As h1 → h2, the
leading nonlinear coefficient α, as noted, approaches zero and the shock is not formed
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unless the cubic nonlinear term is included in the model. Figure 7 shows a finite shock
formation time for h1 ≈ h2 due to the effect of the cubic nonlinearity in the model
(2.4).

To understand somewhat the role of wind stress distribution on the shock formation
time, we computed the value of (ts–t0) defined by (4.6) with r =10 for linearly varying
distributions of wind stress. Results are shown in figure 8 as a function of δ, the spatial
gradient of the wind stress. When δ < 0, larger wind stress at the leeward end drives
a larger downwelled amplitude and steeper interface, leading to an accelerated shock
formation. The opposite occurs for δ > 0 with the wind stress increasing towards the
windward end.
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Figure 9. Energy computed at t0 = 1/4 as a function of the upper layer aspect ratio h1/L.
Energies are scaled by the value at h1/L = 0.002.

4.4. Effect of layer aspect ratio

The upper layer aspect ratio h1/L scales only the dispersive and bottom friction terms
in the non-dimensional version of the modified KdV model (2.4). As the length of
the lake increases, the strength of dispersive effects diminish. Here the aspect ratio
determines the length scale of (solitary) waves with respect to the lake length. Our
numerical simulation showed that the actual wavelengths for different aspect ratios
with the same layer thicknesses were approximately the same, an expected result
since the controlling dimension in long wave theory is the smallest layer depth. The
longer the length of the lake, the greater the area over which bottom friction acts,
although the magnitude of the frictional damping is usually small. In figure 9, we
compared the field energies E2 for different h1/L with a layer depth ratio h1/h2 = 1/5
and a uniform wind stress with W =1. The energy increased slightly for shorter lake
length, but the increment is less than 0.3 % for change of h1/L by factor of 10. This
slight change in energy is caused by the bottom friction that is scaled by (h1/L)−1.
The scaled energies for various forcing durations are imperceptively changed from
that shown in figure 5 for this range of the aspect ratio h1/L. If the upper layer
thickness is the same, the energy input from wind is proportional to the length of the
lake for fixed h1/h2. With the observations made in the previous section, the energy
input profile (figure 5) is essentially universal for h1/h2, h1/L and W.

4.5. Effect of temporal wind stress variations and internal wave resonance

We study in this section the role of different temporal variations of the wind stress
on the energy deposition to the internal wave field in a closed basin. Since the model
possesses a distinct free-mode natural frequency, it is expected that the wave field
possibly becomes resonant if the period of the wind forcing is close to the natural
frequency. Thorpe (1974) noted that the large-amplitude internal wave observed in
Loch Ness is possibly caused by resonance to periodic wind forcing. To study such
internal wave resonance, we set up a periodic unit-pulse wind stress input function as
shown in figure 10(a). Each pulse is positive and one-sided (wind blows from left to
right) with bandwidth T0, and the period of the pulse is Tw .

To demonstrate internal resonance, we let Tw be equal to a seiche period Ts (=1),
and internal wave evolutions are simulated for T0 = 1/4, 1/2, 3/4 and 1 with a
spatially uniform stress, and field energies are calculated for these cases as shown in
figure 10(b). The physical parameters were chosen as h1/h2 = 1/5, h1/L = 0.002 and
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Figure 10. (a) Modelled periodic, pulse wind stress input function T (t). Time series of field
energies for: (b) different pulse duration T0 with a fixed forcing period Tw = Ts and (c) different
forcing period Tw with a fixed forcing pulse duration T0 = 1/4. Energies in graph (b) are scaled
by the value for T0 = 1/4 at t = 1/4, and energies in graph (c) are scaled by the value at t = 1/4.
In all cases Ts = 1.

W = 1. For T0 = 1/4, 1/2 and 3/4, the energy increases after every pulse input. In the
present case the bottom boundary loss is so small that the increased energy is not
damped effectively. Although it is not shown in this report, the interfacial surface
displacement for these input functions shows that the amplitudes of the waves become
larger after each wind event. The field energy becomes the highest with T0 = 1/2, and
further increase in the pulse duration decreases the input energy because of the
reaction of the free mode seiche. For continuous stress input (T0 = 1), the energy
rather oscillates with the seiche period, and amplitudes of the oscillations decrease
for large t . For large t , the internal seiche is damped, and the unsteady, short waves
overwhelm the domain. Although the amplitudes diminish in time due to the damping
of the internal seiche, the average energy for each seiche period is approximately the
same.

The field energies increase when the wind forcing and internal seiche are in-phase,
and vice versa when the forcing and seiche are out-of-phase. Here, ‘in-phase’ is when
the interfacial surface is tilting down on the leeward side, and ‘out-of-phase’ is when
the surface is tilting up on the leeward side during wind forcing. If the wind forcing
and seiche are in phase periodically, the internal wave field becomes resonant as
demonstrated above. If in-phase and out-of-phase forcing are repeated one after
another, the wave field is expected to be neutral energetically (one particular case
is the sustained wind forcing discussed above). Figure 10(c) shows time series of
internal wave energies for different forcing periods Tw . For Tw = 1/2 and 3/2, energies
oscillate in time because these forcing periods repeat in-phase and out-of-phase forcing
periodically, while the energy rapidly increases for the resonant case (Tw = 1). For the
intermediate cases (Tw = 0.8 and 1.2), the energies do not continuously increase as
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Figure 11. Energy gain as a function of forcing period Tw for T0 = 1/4.
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the resonant cases, but energies increase for the first three consecutive wind-forcing
events. Here, we denote the initial energy level after the first wind forcing as E(1),
and so for the next energy level after the second forcing as E(2). Figure 11 shows the
energy gain E(2)/E(1) for various forcing periods. The energy gain has a maximum
value about 4 at Tw =1 and minima at Tw =1/2 and 3/2. The energy grows after two
consecutive wind pulses (E(2)/E(1) > 1), if the wind-forcing period is approximately
0.7 <Tw < 1.3.

To explore the role of damping on resonant forcing, the energy levels E
(n)
2 were

computed as a function of the bottom friction coefficient for a particular forcing
having T0 = 1/2 and Tw = 1. The results are presented in figure 12 showing that the
higher energy levels are progressively affected by bottom friction, but that even E

(3)
2

is only marginally affected for values of Cf � 0.0025.
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Figure 13. Wavenumber spectra of interface displacement fp as a function of time for

Wedderburn numbers (a) W−1 = 0.5, (b) W−1 = 1 and (c) W−1 = 1.5. The wavelength λ is
scaled by L. A uniform wind stress is applied for 0 � t � 1/4.

5. Downscaling of energy spectra
In order to quantify the energy downscaling from the basin-scale to smaller scales,

the time evolution of the wave spectra of the interface displacement fp(=ζp/h1) was
computed. Figure 13 shows spectral evolutions obtained from numerical simulations
with different W−1. The physical parameters were chosen as h1/h2 = 1/5 and
h1/L =0.002, and a uniform wind stress was applied for a quarter seiche period.
Low-wavenumber basin-scale waves dominate the energy spectrum for the early
stages after a wind event. Energy flow into higher wavenumber scales becomes
apparent approximately at the same time that the nonlinearity, in the presence of very
weak dispersion, causes a shock front to form. Subsequently, as ISWs evolve from
this front, shorter scale waves spread over the basin due to the influence of dispersion.
The influence of dispersion in the wave spectra is manifested as a gradual decrease
of wavenumber in the higher wavenumber band that is associated with shocks and
ISWs. In figure 14, we computed (a) the total wave energy by integrating the spectra
over entire wavenumber range; (b) the energy contained in the basin-scale seiche by
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Figure 14. Time series of (a) total spectral energy, (b) energy contained in 0 � λ−1 � 2 and
(c) energy contained in 10 � λ−1 � 40 for different Wedderburn numbers W. Energies are
scaled by the value for W = 1 at t = 1/4.

integrating over the wavenumber band 0 � λ−1 � 2 and (c) the energy contained in
shocks and ISWs which is apportioned to the wavenumber band about 10 � λ−1 � 40,
where λ is the wavelength scaled by L. The total energy employed here is different
from E2 in previous sections (i.e. E2 is proportional to the sum of kinetic and potential
energy of the flow field as shown in Appendix, but the total energy computed here is
proportional only to potential energy). The total energy oscillates in the early stage
due to seiching. As ISWs evolve, high-frequency oscillations emerge due to formation
of short-scale standing waves arising during reflection of ISWs from the endwalls.
The larger the imposed wind stress, the greater the total energy deposited into the
low-wavenumber band, which then flows into the nonlinear wave energy band. Again
as shown in figure 14, basin-scale motion contains most of the total energy during
the early stage, but it decreases gradually as nonlinear waves appear in the evolution
process following front formation and subsequent action of dispersion.

6. Effects of variable topography and width
In this section, we first apply the modified KdV model as described by (2.1) for

variable topographies. In order to study the effects of the variable topographies,
we set up a simple sloping topography model as sketched in figure 15. The basin
is the deepest at the left endwall with h2 = 5h1. The topography possesses a long
slope with a height hb in the middle of the domain, and it is connected to flat
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Figure 15. Sloping topography set-up for the numerical simulation. The wind stress is
applied in either (a) upslope or (b) downslope direction.
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Figure 16. Internal wave evolution over the sloping topography with hb = 3h1 for upslope
wind (a), and downslope wind (b). A uniform wind stress with W = 1 is applied for 0 � t � 1/4.

surfaces. The slope and flat level surfaces are connected by a smooth curve in order
to avoid unphysical numerical noises which are usually caused by topographical
discontinuities. The basin width is set to constant, and the upper layer aspect ratio is
fixed h1/L =0.002. The wind stress distribution is fixed uniform. Since the topography
is asymmetric, the dynamical responses associated with wind-forcing directions are
expected to be different. Figure 16 shows the internal wave evolutions for upslope
and downslope wind directions with W =1. It can be observed that a packet of
ISWs appears earlier for the downslope wind than for the upslope wind. Figure 17
shows the shock formation time for various hb. From figure 17, the difference in
the shock formation time increases as hb increases. When the wind blows in the
upslope direction, the wavefront is initiated at the shallower end, where the surface
depression (or gradient of the wavefront) is restricted by the shallow water effect
(i.e. the coefficient ks scaling the rate of wind energy input in the evolution equation
(2.1) is proportional to h2 for sufficiently small h2). The amplitude of the front is
being diminished as the front advances in the downslope direction. On the contrary,
when the wind blows in the downslope direction, the wavefront is initiated at the
deeper end, and the front advances in upslope direction, where the front is amplified.
Consequently, as the slope becomes high, the nonlinear effects (shock, ISWs) appear
earlier for the downslope wind.
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Figure 18. Variable width set-up for numerical simulation. Depth is constant (h2 = 5h1).
Wind stress is applied in either (a) narrow end downwind or (b) wide end downwind direction.

To study the effects of variable width we set up a simple geometry as sketched
in figure 18. The basin has a greater width Wl on the left section and a narrower
width Wr on the right section, and these sections are connected by a smoothly blended
straight taper section. We fix h1/h2 = 1/5, h1/L =0.002, and use a uniform wind stress
distribution. Since the depth is set uniform, all the coefficients in (2.1) are constant.
Similar to the variable topography case, we apply the wind stress towards either the
narrow end or the wide end. Internal wave evolutions for each wind direction are
compared in figure 19. Shock formation and emergence of a train of ISWs appear
earlier for wind blowing towards the wide end than for wind blowing towards the
narrow end. Differences in the shock formation time increase for higher contraction
ratios as shown in figure 20. The reason for the difference is similar to that for the
variable topography case. If the wind blows towards the wide end, the wave front is
initiated at the wide end, and it advances towards the narrow end where the wavefront
is amplified. If the wind blows towards the narrow end, the wavefront is initiated at
the narrow end, and it advances towards the wide end where the amplitude of the
front is diminished. As the result, the nonlinear shock emerges earlier for a wide end
downwind than for a narrow end downwind.

Figure 21 shows temporal signal of the interface surface displacement at x = 1/4
and x =3/4 during the time range the wave packet is propagating: (a) in the upslope
direction over a variable topography case with hb = 3h1, and (b) in the narrowing
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Figure 19. Internal wave evolution through variable channel width with Wr/Wl = 1/3 for
narrow end downwind (a) and wide end downwind (b).
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Figure 21. Comparison of temporal signal of the interface displacement fp sampled at x = 1/4
and x = 3/4 for (a) sloping topography case with hb = 3h1 and (b) variable width case with
Wr/Wl = 1/3. In all cases a uniform wind stress with W = 1 is applied for 0 � t � 1/4.

direction in a variable width case with Wr/Wl = 1/3. These sample points correspond
to the beginning and the end points of the sloping bottom or the variable width. It
is observed that the wave packet is amplified for both cases. It can be shown that
the wave amplitudes are, in turn, diminished when the wave packet is propagating
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Figure 22. (a) Modification of the sloping boundary and (b) schematic of the eddy viscosity
function νs defined along the modified slope.

in the opposite direction. From the figure the wave amplification ratio is about
1.1 for the variable topography case and about 2.0 for the variable width case.
Although contraction ratios of the basin section area are of similar magnitude, the
wave amplification of the variable width case is considerably larger than that of
the variable topography case. This implies that the amplitudes of the wave packet
are effectively amplified (or diminished) through a channel having variable width
rather than having variable depth, a result attributable primarily to the fact that the
nonlinear coefficient α1 diminishes with shallower depth h2, but α1 remains unchanged
as the width varies.

7. Modelling of reflection and dissipation during shoaling on sloping
boundaries

In many stratified lakes the thermocline intersects the sloping boundary at the ends
of a basin. Field observations and laboratory experiments have suggested that, when
the wind generated internal wave front reflects from the sloping boundary, a significant
fraction of its energy is dissipated due to strong mixing at the boundary. This mixing
process has an important implication for biological productivity in aquatic systems
(Ostrovsky et al. 1996). In this section we attempt to apply the KdV-type model to
narrow basins with a sloping endwall. First, we propose a geometrical modification to
the sloping boundary and, second, introduce an additional dissipation which accounts
for the strong dissipation on the slope. This modified model is then compared with
the results obtained from experiments.

7.1. Modelling

The theoretical model we used in previous sections is only applicable to lakes where
the metalimnion intersects the end at a vertical wall, and waves are assumed to
undergo complete reflection at the walls. Since the lower layer depth approaches zero
at a sloping boundary, the wave phase speed also approaches zero. Then the wave
is ‘choked’ at the boundary, invalidating a basic premise in the derivation of the
KdV model. To prevent the wave choking and yet allow for inclusion of rudimentary
aspects of wave shoaling, we introduce a modified geometry to represent a fully
sloping boundary. In figure 22(a) we introduce a shelf region with depth beh1, where
be is a free parameter. A vertical wall is placed at the end of the shelf a distance δeL

beyond the point of intersection between an equilibrium interface and the sloping
bottom. δe is a second free parameter, and it is inserted to adjust the phase of the
seiche and resulting shock formation. Since the modified domain has vertical endwalls,
we can extend the modified domain to the computational domain (figure 2). In order
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Figure 23. (a) Dimension of the laboratory tank. The tank is 30 cm wide unifromly. Three
wave gauges (WGA, WGB, WGC) are installed to measure the interface surface displacement.
(b) Initial interface surface tilt with upwelling at the slope. (c) Initial interface surface tilt with
downwelling at slope. All these figures are not to scale.

to account for the dissipation coming from shear across the metalimnion (interface)
and mixing at the sloping boundary, we add a dissipation term that derives rationally
if the bulk effect of friction is included in the underlying Boussinesq model. In this
case the reduced KdV model has the form

ζt + c(ζ )ζx +
β

2
c0ζxxx +

1

2

dc0

dx
ζ = F − D + νsζxx . (7.1)

The nonlinear terms are now represented by a nonlinear phase speed c(ζ ) function,
and νs is an eddy viscosity which may depend on space. F and D are the wind-forcing
and bottom boundary loss terms, respectively, defined in (2.1). It is proposed that the
spatial distribution of νs be modelled to account for such effects as strong interfacial
shear as the wave steepens in the shoaling region, enhanced dissipation as a locally
thin bottom layer forms when the interface is drawn towards the sloping boundary
(cf. Michallet & Ivey 1999), and energy loss due to wave breaking. Figure 22(b) shows
one conceptual distribution of νs over the modified domain, assuming its maximum
value at the endwall and decreasing to zero over the shoaling region and towards the
central portion of the basin.

7.2. Application

Boegman et al. (2005a) reported experimental results of long wave packets generated
in a closed basin with a sloping boundary. In this section we apply our proposed model
to their laboratory tank, and compare our simulation with their experimental results.
The laboratory tank is 6 m long, 29 cm( = H ) deep and 30 cm wide (figure 23a). One
endwall is inclined with a slope of either S = 1/10 or S = 3/20. The other endwall is
vertical. The tank is filled with fresh water overlaying saline water, and it is closed by
a rigid lid. Before performing an experiment, the tank is rotated to obtain a desired
initial tilt of the interface surface. Then at t = 0 the tank is rapidly rotated to the
horizontal position so that the interface is initially inclined at the original tilt angle
of the tank. The initial interface surface is either upwelling or downwelling on the
slope (figures 23b and 23c, respectively). Three wave gauges are installed to measure
the displacement of interface surface.

Since this experiment corresponds to an initial value problem, the wind-forcing
term is turned off. The measured initial interface surface tilt is halved and even-folded
onto the computational domain. For direct comparison to experiment, we replace the
turbulent bottom friction term by the dissipative effect corresponding to a laminar
boundary layer along the surface of the tank (cf. Keulegan 1948; Miles 1976). The
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Run S h1/H ζ0/h1 δe νs0 (m2s−1)

2 3/20 0.18 −0.86 0.0 0.04
12 3/20 0.20 +0.85 0.07 0.04
20 1/10 0.20 −0.77 0.0 0.002
28 1/10 0.20 +0.58 0.02 0.002

Table 1. Parameters of the experimental runs. The density difference was set as �ρ ≈ 20 kg m−3

for all runs. The maximum initial surface displacement ζ0 is measured at the vertical endwall
with a plus(+) or a minus(−) sign to distinguish ζ0 is either above(+) or below(−) the
equilibrium interface surface. Physical wave data from Boegman et al. (2005a).

model equation employed here is then given as

ζt + c(ζ )ζx +
β

2
c0ζxxx +

1

2

dc0

dx
ζ = νs(x)ζxx +

1

4π

√
c0ν

2

h1h2

ρ1h2 + ρ2h1

×
{

ρ2

h2
2

(
1 +

2h2

b

)
+

ρ1

h2
1

(
1 +

2h1

b

)}∫ ∞

−∞
|k| 1

2 (−1 + i sgnk)ζ̂ (k, t)eikx dk, (7.2)

where ν, b and ζ̂ (k, t) are kinetic viscosity, width of the tank and Fourier transform
of ζ (x, t), respectively. Since the wave amplitude in this study, and especially in the
shoaling region, is relatively large, we employ a fully nonlinear phase velocity (cf.
Ostrovsky & Stepanyants 2005; Sakai & Redekopp 2007):

c(ζ ) = c0

[
1 + 3

(h1 − h2)(h1 − h2 − 2ζ )

(h1 + h2)2

×
(√

(h1 − ζ )(h2 + ζ )

h1h2

− h2 − h1 + 2ζ

h2 − h1

)]
. (7.3)

Although expressions for the nonlinear, higher order dispersive term are also available
(see Koop & Butler 1981; Ostrovsky & Grue 2003), we continued to use only the
weakly dispersive term. The spatial distribution of the eddy viscosity νs is modelled
by a Gaussian function of the form

νs(x) = νs0 exp

[
−

(
x

xs

√
| ln ε|

)2
]

, (7.4)

where ε is a small fraction of the eddy viscosity at the end of the slope x = xs

(figure 22). We fixed ε = 0.01 for all simulations and νs0 was adjusted to yield
correspondence with experimental results; i.e. the interface displacement signal
obtained at wave gauge B (WGB) so that the reflecting wave packet is properly
dissipated after reflection.

We chose four experimental runs for comparison. Parameters for each run are
summarized in table 1. It can be shown from (7.3) that, if the amplitude is large,
the nonlinear phase velocity may cross zero and become negative for given h1/h2. In
such a case the wave can be ‘stagnated’ near the shelf region. The critical amplitude
is smaller as the shelf becomes shallower. To avoid this stagnation, the shelf needs
to be sufficiently deep. In this study we simply fixed be = 1.5 for all runs. The shelf
extension parameter δe was adjusted and determined so that the phase of the wave
packet measured at WGB matches the experimental result. The value of δe for each
run is listed on table 1. Since the domain length is modified in the simulation, the
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Figure 24. Time series of the isopycnal surface displacement ζp measured at WGB for Run2,
Run12, Run20 and Run28. Solid lines are obtained from the numerical simulations. Dot-dash
lines are obtained from the laboratory experiments by Boegman et al. (2005a). The wave
signals under the left and the right arrows are incoming wave packet on to the slope and the
reflected wave packet from the slope, respectively. The reflection coefficients (see figure 25) are
computed for each pair of incoming and reflected wave packet labelled by a number (1 or 2)
under each arrow.

initial condition is also modified. In the modified domain, the initial surface slope
was kept the same and the position of the interface was adjusted so that the positive
and negative volumes are equal. The computational domain was discretized into 512
points, and a time step �t = 0.0005 (s) was used for all runs.

Interface displacements measured at WGB are compared in figure 24. For all
runs, the phase of the wavefront matches qualitatively for the first and second set of
incoming and outgoing packets. For Run2 and Run20 (both are initial conditions with
upwelling on the slope), the amplitude of the front during initial reflection is about
20 % smaller in the simulation than in the experiment. Since the eddy viscosity was
assumed stationary, this was caused by excessive dissipation of the initial wavefront at
the slope. In the first incoming packet, about three to five solitons are well predicted by
the numerical model. For Run12, the first incoming packet possesses larger amplitude
oscillations, and the wave amplitudes significantly deviate from the experiment. The
packet is initiated at the vertical endwall where the eddy viscosity is zero. Since the
initial amplitude is large (ζ0/h1 = 0.85), some additional eddy dissipation may need
to be considered. For Run28 where ζ0/h1 = 0.58, no such high-amplitude oscillation
was observed in the numerical simulation. For Run12 and Run28, by taking account
of the resolution of the experimental measurement, which is ±2 mm, the first two or
three major solitons are well predicted by the numerical model (see 200 � t � 230 [s]).
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Figure 25. Comparison of reflection coefficients Er/Ei obtained from the laboratory
experiments and the numerical model. Dash number in each label indicates the number
of reflection as indicated in figure 24. Dash lines are ±0.15 deviation from the equal line.

We define here a reflection coefficient Er/Ei as a ratio of the energy of the reflected
wave packet over that of the incoming wave packet:

Er

Ei

=

1

t3 − t2

∫ t3

t2

�ρζ 2 dt

1

t2 − t1

∫ t2

t1

�ρζ 2 dt

. (7.5)

The interval [t1, t2] and [t2, t3] are intervals of incoming and reflected packets,
respectively. The reflection coefficients for experimental and numerical runs were
computed and compared in figure 25. Five out of eight reflection coefficients fall
into ±0.15 deviation range. All reflection coefficients obtained from Run12 numerical
simulation are about 50 % smaller than those of the experiment, primarily because the
high-amplitude oscillations are not damped at the vertical endwall in the numerical
model. Although the first reflection coefficient for Run2 is well predicted by the
numerical model, the second reflection coefficient is about 50 % smaller than that
of experiment. From figure 25, the numerical model is over damping for the second
reflected packet, but at this stage, wave amplitudes are quite small and experimental
resolution is comparable to the wave amplitudes. Measured reflection coefficients can
vary significantly by such an error.

From table 1, eddy viscosities seem to depend primarily on slope S. An increase
in slope by a factor of 1.5 results in an increase in the eddy viscosity by a factor
of 100. For large slope νs can increase, but the region of slope becomes shorter
in the domain. Hence, total dissipation effects are expected to be weaker for larger
slopes. The domain extension parameter δe had to be adjusted for Run12 and Run28
cases in which initial conditions are both downwelling at slope in order to match the
measured shock formation position. Due to the very limited number of experiments
for comparison, the functional dependence of δe remains open. However, based on
available data, we can propose the ‘closed’ shoaling model (7.2) with the model
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parameters δe and νs0 given by

δe =

⎧⎪⎪⎨⎪⎪⎩
0,

ζ0

h1

< 0.5,

1

10

(
2

ζ0

h1

− 1

)
,

ζ0

h1

> 0.5;

(7.6)

νs0 =
1

2
ν exp[(20 ln 20)S]. (7.7)

The values of ζ0 = ζ (x = 0, t) can be obtained from relation (4.2) using the relevant
Wedderburn number W and lake depth ratio h2/h1. Better definition of these
parameters awaits further experiments of the type reported by Boegman et al. (2004).

8. Conclusions
A variable environmental driven-damped KdV-type model was applied to the

problem of wind-forced internal wave generation in narrow lakes, and the model was
found to be useful for obtaining first-order physical information for various sets of
parameters with minimal computational effort. The spatial distribution of the wind
stress over the lake surface is an important factor to determine the total energy input
to the internal wave field. Even if the integral of the stress distribution is the same,
the total energy inputs are quite different as demonstrated by using sinusoidal and
uniform wind stress distributions. We were able to also demonstrate an internal wave
resonance phenomena. If the wind blowing over a lake surface is near its seiche
frequency, it is possible that the wave is amplified and the field energy continues to
grow.

Duration of wind forcing is an important factor in predicting the total field
energy. Maximum energy is obtained when the wind blows for half a seiche
period. Therefore, the wind-forcing frequency and duration of each forcing event are
important parameters for studying the dynamical response of lakes. Such dynamical
behaviour can be easily simulated by using the present model. We studied effects of
key environmental parameters: the layer depth ratio h1/h2, the upper layer aspect
ratio h1/L and Wedderburn number W. Energy input with respect to the wind-
forcing duration appears to be universal. The form of wind energy input curve does
not depend on these parameters.

We have quantified the effect of nonlinearity by defining a shock formation time.
The shock formation time is well parameterized by using W−1 and h1/h2. We
have quantified the energy downscale processes by computing time evolution of
wave spectra. It was shown (in figure 14) that the basin-scale energy is continually
transferred to shorter length scales (solitary waves). Such shorter length scale waves
are generated by the interactions between nonlinear and non-hydrostatic effects in
the equations of motion.

The numerical model was applied to variable topography and variable width lake
models. Wave amplification during propagation up a slope or into a contraction
was well produced by the numerical model. Similar to results for rectangular lakes,
basin-scale energy is continually transferred to shorter length scales, but at accelerated
rates. Although variable topography introduces spatially varying coefficients in each
term in the numerical model, these coefficients are constant for variable width with
constant topography. As demonstrated in § 6, the variable width is a more effective
wave amplifier than the variable depth.
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Our numerical model was applied to shoaling along a sloping boundary by
introducing a shelf region and by introducing a second-order dissipation term
multiplied by an eddy viscosity. It was found to be possible to produce results
that match experiments qualitatively. We attempted to reduce the number of free
parameters to the maximum eddy viscosity ν0 and a shelf extension parameter δ.
ν0 appears to be dependent primarily on the slope. Parameterization of δe is left
unknown. Since this is the first attempt to apply a simple numerical model to
shoaling on a sloping boundary, further study of the modelling and parametrization
are left for future work.

The authors acknowledge the receipt of helpful comments from anonymous
reviewers.

Appendix. Total energy of the flow field
Consider the linear Boussinesq equation for an interfacial wave in a medium with

constant depth:

(h1u1)t − c2
0ζx = 0,

ζt − (h1u1)x = 0.

From these equations, we can construct the conservation equation

∂

∂t

{
h2

1u
2
1 + c2

0ζ
2

2

}
+

∂

∂x

{
−c2

0h1u1ζ
}

= 0. (A 1)

An equation of similar form exists for the lower layer. Adding the equations for the
separate layers yields

∂

∂t

{
h2

1u
2
1 + h2

2u
2
2

2
+ c2

0ζ
2

}
+

∂

∂x

{
c2
0(h2u2 − h1u1)ζ

}
= 0. (A 2)

The first bracketed term is proportional to the total energy density, which contains
horizontal kinetic energy of the fluid in the upper and lower layers and the potential
energy resulting from deflection of interfacial surface. The second bracketed term is
proportional to the total horizontal momentum flux of the upper and lower layers.
Integrating (A 2) over the physical domain [0, L], and using the velocity vanishing
boundary condition, we get

∂

∂t

∫ L

0

{
1

2

(
h2

1u
2
1 + h2

2u
2
2

)
+ c2

0ζ
2

}
dx = 0. (A 3)

Using f and g to represent the right- and left-going displacement functions in the
extended computational domain (see § 2), u1, u2 and ζ can be expressed

u1 = − c0

h1

(f − g); u2 =
c0

h2

(f − g); ζ = f + g. (A 4)

Substituting (A 4) into (A 3), we have

∂

∂t

∫ L

0

f 2 + g2 dx =
∂

∂t

∫ 2L

0

f 2 dx = 0,

after using (2.3). Thus, the integral of square of the amplitude over the computational
domain is a conserved quantity, which can be interpreted as the total energy of the
flow field.
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